Coagulation-Fragmentation Model for Animal Group-Size Statistics

نویسندگان

  • Pierre Degond
  • Jian-Guo Liu
  • Robert L. Pego
چکیده

We study coagulation-fragmentation equations inspired by a simple model proposed in fisheries science to explain data for the size distribution of schools of pelagic fish. Although the equations lack detailed balance and admit no H-theorem, we are able to develop a rather complete description of equilibrium profiles and large-time behavior, based on recent developments in complex function theory for Bernstein and Pick functions. In the large-population continuum limit, a scalinginvariant regime is reached in which all equilibria are determined by a single scaling profile. This universal profile exhibits power-law behavior crossing over from exponent − 23 for small size to − 3 2 for large size, with an exponential cut-off.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A model of size distribution of customer groups and businesses

We present a generalization of the dynamical model of information transmission and herd behavior proposed by Egúıluz and Zimmermann. A characteristic size of group of agents s0 is introduced. The fragmentation and coagulation rates of groups of agents are assumed to depend on the size of the group. We present results of numerical simulations and mean field analysis. It is found that the size di...

متن کامل

A model for the size distribution of customer groups and businesses

We present a generalization of the dynamical model of information transmission and herd behavior proposed by Egúıluz and Zimmermann. A characteristic size of group of agents s0 is introduced. The fragmentation and coagulation rates of groups of agents are assumed to depend on the size of the group. We present results of numerical simulations and mean field analysis. It is found that the size di...

متن کامل

An introduction to mathematical models of coagulation–fragmentation processes: A discrete deterministic mean-field approach

We summarise the properties and the fundamental mathematical results associated with basic models which describe coagulation and fragmentation processes in a deterministic manner and in which cluster size is a discrete quantity (an integer multiple of some basic unit size). In particular, we discuss Smoluchowski’s equation for aggregation, the Becker–Döring model of simultaneous aggregation and...

متن کامل

What Determines Size Distributions of Heavy Drops in a Synthetic Turbulent Flow?

We present results from an individual particle based model for the collision, coagulation and fragmentation of heavy drops moving in a turbulent flow. Such a model framework can help to bridge the gap between the full hydrodynamic simulation of two phase flows, which can usually only study few particles and mean field based approaches for coagulation and fragmentation which rely heavily on para...

متن کامل

Explosion Phenomena in Stochastic Coagulation – Fragmentation Models

First we establish explosion criteria for jump processes with an arbitrary locally compact separable metric state space. Then these results are applied to two stochastic coagulation–fragmentation models— the direct simulation model and the mass flow model. In the pure coagulation case, there is almost sure explosion in the mass flow model for arbitrary homogeneous coagulation kernels with expon...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Nonlinear Science

دوره 27  شماره 

صفحات  -

تاریخ انتشار 2017